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A : Shik and Stone
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B : Construct Sequences
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rp, =1 (1<i<n) &LT,
A; = 30000 x i (1 <i<n)
B; = 30000 x (n—4) +r; (1<i<n)
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30000 x 1 < A; < 30000 x n < 30000 x 20000 = 1 < A; < 10°.

30000 x 1+ 1 < B; < 30000 x n 4+ n < 30000 x 20000 + 20000 = 1 < B; < 10°.

A; = 30000 x i < 30000 x (i+1)=A;41.

B; = 30000 x (n —14) 4+ r; > 30000 x (n — i) = 30000 x (n —i— 1)+ 30000 > 30000 x (n —
i—1)+7ri1=DB;_1.

Ay, + By, = 30000 x p; + 30000 x (n — p;) + rp, = 30000 x n +¢ < 30000 x n+i+1=
30000 X pi1 + 30000 X (n — pis1) + iy = Ais1 + Biy1.

C : Pushing Balls
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D : Shik and Game
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E : Shik and Travel
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function f
argument: root city i of some subtree
return value: a set S_i of ordered pair of numbers
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£(i) {

if n_i = 1:
return {(0, 0)}

set S_i as empty set

denote the number of two son cities of city i as j and k

let S_j = £(j) and S_k = f(k)

for all combination of element (a,b) in S_j and element (c,d) in S_k:
if (b+c+v_j+v_k <= V) then add (a+v_j, d+v_k) to S_i
if (a+d+v_j+v_k <= V) then add (c+v_k, b+v_j) to S_i

return S_i
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F : Shik and Copying String
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AtCoder Grand Contest 007 Editorial

writer : dreamoon

A : Shik and Stone

The solution of this problem is quite short. We can get the answer by counting the number
of '#’s in the input. If the number is equal to H + W — 1, the answer is 'Possible’. Otherwise,
the answer is 'Impossible’. Now we want to prove this conclusion.

Firstly, the set of steps which only uses right and down moves(denoted as S4) is equal to
the set of steps using minimum moves(denoted as Sg). Let’s prove it.

Denote g; as the sum of row number and column number of the i-th position of stone.
If using only right and down moves in -th step, g;41 = ¢g; + 1. Otherwise, for left and
up moves, g;i+1 = g; — 1. That is, the absolute difference of two consequtive numbers in
sequence g¢; is always 1. Suppose Shik uses n steps to move the stone. We know that g; = 2
and ¢gn,4+1 = H + W. Therefore, we can know the minimum value of n is H + W — 2 and
gi+1 = g; + 1 for all ¢ must be satisfied when n = H + W — 2. Then we get that S4 and Sp
are all sequences of moves such that n=H + W — 2.

Secondly, because '#’ denotes that the stone had ever located at this position, n + 1 >
the number of '#’s. If the number of ’#’s is larger than H + W — 1, n will be larger than
H + W — 2, then Shik doesn’t use the minimum moves. So in this condition the answer is
always 'Impossible’.

Finally, because there always exists a valid sequence of moves for Shik in inputs. We can
choose any of valid sequence first, then remove these steps such that the position sequence of
stone form cycles (you can see the picture below for understanding). The removing is always
possible becuase it’s impossible to decrease the number of '#’s. If it is possible, it will conflict
with the fact that the input is valid. After removing all unnecessary cycle steps, we can get a
moving sequence which the number of steps added one is equal to the number of '#’s. Now

we get a possible moving sequence using minimum steps which match the input.
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Bonus problem: If the input dosn’t need to be generate by some valid moving sequence.
Can we use the same method to determine whether such input is generate by Shik with using

only right and down moves in all steps.? If not, how to solve it?

B : Construct Sequences

First we give a possible solution then we justify that it satisfies all of the conditions:

Let rp, = ifor 1 <i < mn. A; =30000 x i for 1 <i < mn. B; = 30000 x (n — i)+ r; for
1< <n.

Now the (sketch of the) proof:

30000x1 < A; < 30000 xn < 30000 x20000 =>1 < A; < 10°. 30000x 1+1 < B; < 30000 x
n +n < 30000 x 20000 + 20000 => 1 < B; < 10%. A; = 30000 x i < 30000 x (i +1) = A; 4.
B; = 30000x (n—1i)+r; > 30000x (n—i) = 30000x (n—i—1)+30000 > 30000x (n—i—1)4r;—1 =
Bi_1. Ay, + By, = 30000 x p; + 30000 x (n —p;) 4+ rp, = 30000 x n+1i < 30000 x n+1i+ 1=
30000 X pi11 + 30000 X (n — pip1) + 7p,, = Ait1 + Bita

C : Pushing Balls

Notice that after rolling one ball, if we renumber all the remaining balls and holes, the
balls still satisfy that the i-th ball is between the i-th hole and the (i 4+ 1)-th hole. Let’s also
recalculate the expected value of the distance between neighbouring items for all possible rolls
of the last ball. We can find that the the expected value E[d;] is still an arithmetic sequence
with N decreased by 1.



So we can calculate the answer recursively: calculate the expected value of rolling distance

of the first ball, and sum it with the remaining similar problem in reduced size.

D : Shik and Game

If the player decided to go back to pick up some coins, he will go back to the very first coin
he hasn’t picked up or even wait for the first coin to appear, otherwise he needs to go back
for that coin again. So, we could partition all the bears into continuous segments to represent
a strategy of the game. More specifically, we first give candies to all the bears in a segment,
go back to collect all the coins in this segment and then proceed to the next segment.

Assuming we have M segments and the i-th segment starts at position L; and ends at

position R;, the answer to the problem is F + % max(t,2 x (R; — L;)). Let dp[i] be the answer
to the problem with only first ¢ bears, we hazv:eldp[i] = min(dp[j] + max(t,2 x (a; — aj+1))),
an O(N?) dp solution. ’

To accelerate the solution, we can split the max part in the above equation into two parts:
t>2x(a;—aj41) and t < 2x (a; —aj41). It’s trivial that for each i we can find a pivot p such
that the first part consists of all j > p and the second part holds for all j < p. Furthermore,
it’s easy to show that p is non-decreasing for all i, so we can maintain p using amortized O(V)
time for all 4.

For the first part, the equation is now min(dp[j]+t). dp[] is non-decreasing, thus the smallest
possible j will leads to the optimal solutiZ)n in all 5. We can calculate this part greedily using

O(N) time for all 1.

For the second part, the equation is min(dp[j] + 2 X (a; — aj+1)). We can rewire it as
j

2xa; + mjin(dp[j] —2 X aj4+1). By maintaining another dp array dp2[i] = rjn:zull(dp[z] —2Xa;y1)
in O(N) time for all ¢, we can calculate 2 x a; + min(dp[j] — 2 X a;4+1) = 2 X a; + dp2[j] in
O(N) time for all 1. !

To this point, we have improved the time complexity of the solution from O(N?) to O(N).

E : Shik and Travel

You may have the intuition that the first step of solving this problem is to apply binary
search on answer. It’s also the first step of the solution provided here. So, we are going to
study the sub problem here: whether there exists an arrangements of leaf cities to stay during
the travel such that the answer is not larger than a certain value V.

Firstly, we should know one thing: in the travel, once the employee passed a road i, he/she

will visit all cities belong to the descendants in the subtree rooted at city i + 1 before passing
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the road ¢ again. So for any given city, Shik always stay at all leaf cities in the subtree rooted
from this city in consecutive days. More precisely, if the subtree of city ¢ contains n; leaves,
there exist some number st; such that in the last part of day st;, the first part of day st; + n;
and all days from day st; + 1 to day st; + n; — 1, Shik is travelling in the subtree of city 1.
Nevertheless, in other days the employee won’t be in this subtree.

After knowing that, we give a straightforward recursive algorithm to solve this sub problem.
The main idea is to recursively merge possible answers from both children to produce all

possible answers of a vertex. Following is the pseudo code:

function f

argument: root city % of some subtree

return value: a set S; contains ordered pairs (a,b),
each representing there exists one possible
order of stay sequence of leaf cities such
that the sum of tolls at the st; day in
this subtree is a, the sum of tolls at the
day t; +n; in this subtree is b and sum
of tolls in any days from day st; +1 to day
st;+mn; —1 is not larger than V.

f@ 1

if vertex ¢ is leaf:
return (0,0)

set S; as empty set

let two children cities of city ¢ to be j and k

let S]:f(j) and Sy = f(k)

for all combinations of (a,b) in S; and (¢,d) in Sj:
if(b+c+uvj+v, <V) add (a+vj,d+v;) to S;
if(a+d+vj+v, <V) add (c+uvg,b+wv;) to S;

return S;

After calling f(1) and getting S7, we can know the answer by whether S; is empty or not.

But the function may produce quite large |S;|. So we want to reduce it. Because our purpose
is only to know whether S is empty or not. We can remove all (a,b) in S; if there is another
pair (a’,b') in S; satisfying o’ < a and V' < b.

Now we want to prove after performing such removal, we have inequality: |S;|] <
2min (|}, |Si):

Assuming |S;| < |Sk|. When a specific pair (a,b) € S; matching all pairs in Sy, the generated
pairs will be in the form of (a+v;,u) and (u,b+v;) (exact value of u depends on the matched
pair in S). Each aforementioned form will remain at most one pair for a given pair (a,b) € S,
(the one with minimum u among all possible values of u). So the maximum size of resulting
set is at most double of |S;|. The proof for |Si| < |S;| part is similar.

Such inequality make many things wonderful! The most important thing for us is that
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Zf-v:l |Si| = O(NlogN). Proof is given as the following:

Denote the distance between node i and the root (i.e. depth) as d;. For each city i, let j be
a leaf city in the subtree of city ¢ which has minimum d;, we have |S;| < 249, So, we can
amortize the value of |S;] to all cities in the subtree of city ¢ with depth exactly equals to d; by
adding value 1 to each of such city. Note that there are exactly 2% ~% such cities because d;
is the smallest depth in the subtree. The amortized value in one vertex is at most loga (N +1);
This is because only the parents of a node who has a maximum distance of log, (N + 1) to
the node has the chance to add value to the node, otherwise the size of the tree would be
larger than N (since we have a complete subtree of depth greater than logs(IN + 1)). As a
conclusion, we get Zf\il |Si] < N xloga(N +1) so Zfil |Si| = O(NlogN).

With the fact we can use two-pointer technique to find the minimum value of « in the two
forms (a+v;,u) and (u, b+wv;) since we can maintain that S to be sorted. The time complexity
of the sub problem will be Zf;l |Si| = O(NlogN). Go back to the original problem. The
time complexity will be O(NlogN x log answer).

F : Shik and Copying String

Note that we don’t consider the case Sy = T'. It’s answer is 0 obviously.
In the beginning, I'd like to roughly give a picture about how the string copying works and

what’s the relation between string Sy and string T'. Please see picture below.
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In this picture, we suppose Sy = ”atcoder” and T' = ”aaaccce”. It shows one possible process
such that Sy = T (Note that this picture does NOT show the process of the optimize solution
for minimum ¢). We are only concerned about the first letter in and these letters which is
different to previous letter of themself (the circled letter in the picture). We can connect these
circled letters to their source letters one by one with disjoint lines and finally stop at letters
in Sy. You may notice that these line can only go either left or down.

In the other face, suppose we don’t know the process between Sy and T. But if we can
draw lines from all circled letters in T" to the same letter in Sy, we can construct one possible
process easily. So we can transform the original problem of finding minimum ¢ to check if we
can draws lines from S; = T to Sp.

Now we give a greedy algorithm in intuition to test whether exist configures of line for some
1 with S; = T for each circled letter from back to front, we draw line to down first if possible,
otherwise we draw it to left. If in some step the drawn lines go out of bound, then there exists
no valid process such that S; =T.

This solution can be proven easily. What we should prove is, if there exists some valid
process for S; = T, then the algorithm in this solution will also construct a valid process.

We can always adjust any valid configuration of lines to match the lines produced by our
algorithm step by step. In each step, we find the first time that the lines don’t draw by our

algorithm and change the direction(always from left to down) of the drew line at this point
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for one unit, and continue to draw the line to left until meeting the lines in previous step. The

picture below show the steps from red lines to meet our algorithm (red -; green -; blue).
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Using this greedy algorithm we can get a binary search answer 4 simulation solution for
this problems. But the time complexity is O(log(N) x N?2).

For speeding up this algorithm, we maintain an array H[j] denoting the highest position
passed by the line in column j. Initially, H[j] = 0 for all j. We iterate k from N to 1. In each
iteration, we can know the answer should at least be H[k] (if T'[k] = T'[k + 1]) or H[k + 1] (if
T[k] # Tk + 1]). If T[k] is a circled letter, we will update values in array H. Next, we will
find the most right letter Sy[l] which is the same with T'[k] and h[l]] = 0. Then the new H]r|
will be equal to old H[r + 1]+ 1 for r from [ to k — 1 (it’s because the line in the r-th column
is come from the (H[r + 1] + 1)-th row in the (r 4+ 1)-th column) no matter which ¢ satisfies
S; = T. Now we have an algorithm without binary search and time complexity is O(N?). But
it’s still not fast enough to solve this problem.

Now we focus on the operation: new H[r] = old H[r + 1] + 1 for r from [ to k — 1. This
operation just give the the part of array with index from [+ 1 to k value of H in array one unit
of left offset and add one to all of them and we don’t care the value in array H not small than
k more! So we can maintain another array h along with two values of fsetyqiue and addyqiye
such the the value hli + of fsetyqiue] + addyaiue equals to H[i]. After that, in each time we

want to do this operation we can only increase both of fsetyqiue and addygiue by one(with
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some more detail not covered here). Finally, we get an algorithm with time complexity O(NV)

which can solve this problem!
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