AtCoder Grand Contest 007 Editorial

writer : dreamoon

English editorial starts on page 8.

A : Shik and Stone

C ORI IR AL T, ANPOXF # Oz <. 2olE» H4+W -1
L& LTS Possible, F L % lF4UZ Impossible Z i T1UX X T d, LIN., Zofgiko
ZMPEE R L ET,

B2 ETAAIC 1 v ATtz TAFy 7)) EMRZEICLEY, £, EEBo~v2»s
FATHET, AERETANDRT Y 70OH%ZH->THEEHTZ L EDAT v 7H0ES (Z0%EL%E
Sp ELET) &, ELEBOR AL THMETCRIDAT Yy 7HTBEIT2 L EDRT v 750D
EBE (COEAZ Sp ELET) BPELWIEZRLET,

1t HHICEID > 7o ADfT 5 LIE SO % g, ELET, i ®RHOARAT Yy 7D £ T~
DATYTRS giur=gi+1 . BEELEENDRT Y 7RhE g1 =g, — 1 DPEVIBET, L
73> T, B g; DBEET 2 ZOOERDOLEOMANEIZEIC 1 LD FT, BT RATy 7
DEZE N ELTBHE, ¢61=2, g1 =H+W EZDET, koT,. n 3PS H+W -2
THD . n=H+W -20DLEEFTXRTD i IOV T g1 =¢g;+1 22T LICEDET, W
AT, Sq L Sp3Ebic, n=H+W -2 TH2LI)BATy 7HEOEALEY £T,

RIZ, # DFBUIEID— LY B> 7o~ ADMEETH 270 n+1> (# DOMEE) 2IRY L
FT,0# DB H+W -1 XDREE n DHAW -2 XD RELS D, AT v 7THI K
HTHRWIEIZRDET, LAadd>T, ZDOEAIE Inpossible Y& Z LR D £,

RIS, # OB H+W —1 L% LIF4UE Possible 2F5 X L LTL I EZ2RLET,]
OB LD . ANSINBEBRICHIET 22Ty 7HBEEL, ZDHIbO—D2%FERET, 20D
ATy TS, WERADINBYA I NVZBRT 2 L) ATy 720 BREES (TRZSH
LTKEEW), # Oz TILRTELRY (Ho¥ 2 k) THIIREOHIRICKT %)
7, TOXIRATy 7EROBL ZERFHEICHEETT, 2OXIRATy 72K E, X
TV THED (# OfE) -1 THEEIBAT Yy TGO NET, TNRERIVDAT Y TEHTH
D, TOAT Y ZHEANTEZoNBEHREESGL T,

""" > s steps

which form cycle

and be removed

>

BE: ZoMEPS TMEXE LY a TEANHREEST 2 &) RBOE) S ALY
5,1 LVl FRCGE, FUMBEPHEZZ2TLEI 2?2 S LHEARVALIIE, €97
FETL X)27

B : Construct Sequences

FTHO—HIZR L, ZNDSZDRBTRCOEMLZIIE-TIER2ZRTIEICLET, T
R D—HlT9,

rp, =1 (1<i<n) <,
A; = 30000 x i (1 <i<n)
B; = 30000 x (n—4) +r; (1<i<n)

IR PEDFEY] (BEE) (LT o) T,

30000 x 1 < A; < 30000 x n < 30000 x 20000 = 1 < A; < 10°.

30000 x 1+ 1 < B; < 30000 x n 4+ n < 30000 x 20000 + 20000 = 1 < B; < 10°.

A; = 30000 x i < 30000 x (i+1)=A;41.

B; = 30000 x (n —14) 4+ r; > 30000 x (n — i) = 30000 x (n —i— 1)+ 30000 > 30000 x (n —
i—1)+7ri1=DB;_1.

Ay, + By, = 30000 x p; + 30000 x (n — p;) + rp, = 30000 x n +¢ < 30000 x n+i+1=
30000 X pi1 + 30000 X (n — pis1) + iy = Ais1 + Biy1.

C : Pushing Balls

R =2 L7cdh &, R DIRENICHETZIRD 2B L, PR i FOKD i FONRE i+1
BONRDMEIZH B Z ENFRA Y P TY, K2 —DWER L7 L &, ROWEX LT E L THRELRSD

TRTEEBRL T, BT 2R ENROMOMEEOMGFEZHER L 3, 51832 £, BEE5
E(d;] 3RV EEEIN 2L, ZORIF 1 HELSBE>T0ET,

LoT, ROLOWIFHEZ FFRICRD 2 2 ENTEET, RIS TERDBET 2 Mol
iz R, o R T 2 MO WITHEZ T A4 D> 7tofE, & LRIk
TSR ER LADET X VT,

D : Shik and Game

DIF, 7= 22MTbN 2 EMRIIEA IO, HIESIZEEERRE 20 LET, 7L
AX =BT =)L ERFHICE>Taf vy ZHVITL EE, BT va y (FFHE
LTuZLbDLat) OIBRLECHZHDDMBEETRHD., b LELHBEL TLARTIUEH
WRETRHONETT, Thwe, Z20aA4 2D ICHPRZBEPELCTLEVET, Ldio
T, SO =28 2B, 7 ~7b 2l 2 XHEICHHEIL Z2boTRINET,
ZONEPRTEERNZTHE, 7LAY—DETRYOXHICWE 72 b2HIX Yy T4 %
G2, TORXBOEND 7 < DAEE TR> TIRTH A y2ige, XOXMICE, £v)b
DTY,

WEGICB U 2 Ko E M . i FRHOXMOLEROER % L, . A% R, £ 8
<k\C@%%K%U%W%ﬁﬁ@lﬂ%%mw@2xﬁﬁ—h”k&biﬁoﬁﬁéi@
@77#6?&T®:4V%EW?%@&%?%%@%%%dW]t£<k\:ﬂudm]:
min(dp[j] + max(t,2 x (a; — a;j41))) &3 ZEWFHHEIC L D O(N?) TR TE T,
jl@%%®ﬁﬁﬁ%&%bibi5otﬁ@rmx@%ﬁﬁ&ﬁb\jﬁ@<ﬁﬁ%t>
2% (a;—ajp1) THEEIBHPAL ¢t <2X (a; —aj41) THDH L) LRFPHICTEIL T, %0l
KL, LEWE p PAEL THIFEDHIFAD § > p . BEHEOHPAD j<p L2 Vb)) ET,
51T, p OMEDS i I L CABHEFBIMT 22 b bh), TTD i INT 3 p Oz &t
O(N) Kl TRD 2 2 EBTEET,

HPH t > 2 x (a; — ajp1) TN L T, BIRGHERED XD 4ZIE min(dplj] +t) &40 F9, A
ﬁh@@@@ﬁ%ﬁ%%%?%k@\:@@@ﬁ@ﬂ@%%$§mj%ﬁ¢@%kbiﬁo:@%
IMEIZTRTD ¢ IS LAFF O(N) Tk s 2 L3 TEET,

i ¢ < 2% (a; — ajq1) TN LTI, BIREHERED A DA min(dp[j] + 2 X (a; — aj41)) &
7O FET, IN%E 2xa;+ mjin(dp[j] —2Xaj11) EEBLET, Ejﬂﬂ’ﬂﬁ@%‘&:ﬁﬁb)% b9)—DD

mw@ﬂ%m%Ldmm:g@mmm—zxwﬂ)aLf\:@@%ﬁ&f@imﬂLéﬁoun
IKFETRD 5 Z LT, 2 x a; + min(dplj] — 2 X aj+1) = 2 X a; + dp2[j] ZFTXTD ¢ 1% LAGE
O(N) BSIEICAHEIT 3 = & 28T % 27,

DIEX D, LoOEOFHEE O(N?) % O(N) IKKET LI ENTEELE,

E : Shik and Travel

I, CoOfMEZ S ETRINCEZDEICN T 2 0 RE2TIRETH L LR AN
WELrHLNERA, TITHHTEMEDZOHHZLEDET, T4bb, HHEH V ITHL
T TEESE? V DTN EA2 X9 %, ROFEHYT 2860 (LT, s 2 5EH0 &N E 9)
DHREFNEET 20021 VI MOMEZE L 2E2 T,

¥9. ROMZEE2ET, KiTh, « FodzEHICE->76, ZJEHICZDEZ@ES £ T
Iy i+ 1 BFOWHEIRE T2HIARCHFET 2 TXRCOE T 2N TEn) €A, 2FD.
b oMz —EHICH N, ZOH» 0 ZOHH 2R E T 2EIRIHET 2 TR TOEHHT
EIELTW 2 Eicah £9, X DIEMICIE, &l ¢ 2R E T 2R RICHAES 2 TEE T OB 2
ni E55E. HBB sty BAEL. LU OWIRICIZERT ¢ 2B E T3 HOARDOHEBICGS 2 Lok
DEJ: TIRITD st; HHDEH D61, Tst;+1 HEH» S st;+n; —1 HEHDMET - &40 Tst; +ny
HH®@EH £ Ty, 2L T, ZOMDIFIIZ RO/ WE 2 Ltk £ 7,

DI EDS, WAMENDOHRN L BEMIR S NE S, KEHT. 20ROy %
HIRIIZIFE L TV E, ZOMEDEMEZHZTHIHEL TWEET, LDTICEMa—F25L
7,

function f
argument: root city i of some subtree
return value: a set S_i of ordered pair of numbers

S_i IEEXR (a, b) HEFhDIELE. ERTOHBIERFRTH > TUTOELSBEDHEET D EERT,
- st_i HEBRKEETZIHEDSE. COPAPRORNBTRETZ2HE a2 THS,

- st_i + n_i HERKRETIREDSE. COMBAARORBTRETZHE b TH S,

- st_i + 1 HBED»S st_i + n_i - 1 HEKEETZIHBEWTNhD Vv LUITTHS,

£(i) {

if n_i = 1:
return {(0, 0)}

set S_i as empty set

denote the number of two son cities of city i as j and k

let S_j = £(j) and S_k = f(k)

for all combination of element (a,b) in S_j and element (c,d) in S_k:
if (b+c+v_j+v_k <= V) then add (a+v_j, d+v_k) to S_i
if (a+d+v_j+v_k <= V) then add (c+v_k, b+v_j) to S_i

return S_i

0D f(1) 2N, S; BETHL0E) PO MEOEZL L) £7,

ML |G| RES BN TEL LT, Zha/hSKMAwTd, HERZ S 0 ETH0E
AVEHDIEDRTHDLI0O, S; DEFE (a,b) TH->T, o <aand b <b & d kI ki
DEHE (0, V) PEHETBEIRLDIE S B 6B 2 EMTEET,

ZDEIHCTBE, S < min(|S)], |Sk]) x2 UKL £7,

1S;] < [Sk] ELET. % (a,b) IK2WT, ZREMHOTERINDHLBTIE (a+vj,u) X
7iE (u,b+v;) (u BEEOK) OLTFIrOBRTEINE T, ZOZNZNICNLT, 20
RTINS &) RBRKINCIED T —2TT, £oT |8 < |8 RENFE L1,
|Sk| < |S;] PHBEDFAETT,

COWHEIR., FEIEAMCBOTRILET, KT, YN (S| = O(NlogN) #S Y 32b
T, LMicZnzmrmL 7,

i HmOHHIN S 1 FOHASH F TOMRE BX) £ d; £ LET, Kl 20T, i Z#MRET
BEARICE T d; BERANERS K S ISl j ZBOE T, $2E, |5 <24% £ADFET,
Lidin T, |S;| Offi%. i #RET BHAKICHERET 2ES dj DT RCTOMII 1 T THEH,
THIENTEET, 20 MEHEH 27> T OBRIZE VT, |S;| DM TXTOTERDIEDOH
ZHZDZEEHD XA, £, KIHEAIC TEH) SNBMHEIE7072D loge(N +1) TT, Lo
T YN 1S < N xloga(N +1) EAD ET,

PLbkd s, RIRDEZHCT S, 27— F SNEREIRES, (a+vj,u) & (u,b+v)) D
ZNZNORRICE T 2 u ORUMEZRDTW L 2 sk D SR RRE R SN
|S;| = O(NlogN) T 2 &M TE, JTLOMEZ O(NlogN x log answer) RHEITHEL Z £ 23T
ER S

F : Shik and Copying String

F9. S =T DLE, ZZ21F0TT, ZOHEIFFNE L THRVET,
TR, BEBTHOINTOBE XTI Sy 206 T ICEET 2R LT,

S, &€
¢ o)

53

5. ¢ O

S, o o

So o

ZtUE, Sy = atcoder., T = aaaccce D& ZDHAFIITHH>T, Sy =T TH L HIHdbD%
RLTOET (RNDBENEEZRDTOEHFTIEH D FHA), MUCTFEHRTZEE, 2
NEDILRADSEDDAICEHTIUT I EDb» D T (KTIEZD &I % LFIIATH
NTVET), Z20LH)% T OATHEN T %2, HFEORFBRICE T 2 XFINcEEN LM
UL EMTHRHEATHE (ZORIIMOREEL> TEVITERA), RBIC Sy IKEENZFEL
XFICHET 2 2L TEE T, MELNT 2 HMELELE TOATT,

BAEOMBEOFBR CLFINNED LI B DTH 20N AHTH->TH, T DITH F N LF
E Sy DXFERMEIEIATEIL, ZI00BMEFIEZMRT 2LV TEET, XoT, LD
MEORDLDIZ, S; =T DATHENTLFTRTLS Sy DRI LFITHZLGIC T ENTES
)N i ERONUL X WTT,

P REDIEE, S, =T TH5 L) BBOBNESHVEET 2089 ik, DITD X9 REKA
TNLHNIYVZALZEDHETEET, T ONTHENLXFZ2HRALDLHTHE, ZRZENDTFD
SHEERRFRZ TIZEWTWE, A WTuhI 32850 EEIOALEICFH TVWEET,
LT~ 2AH» 6 3AH2 XI5 e8bUR, S, =T TH5 L) Bos S/ I3HFEEL
FHA,

COELBEEUTOLICREET, S; =T THE LI BHMOFNEHVPETLLE, Lok
IBEREGIZHTOMEIS I ENTELILZRLET,

EEOMDEIZHIIHN L, ZNZEREGZHTTHONDE L) BLDICEBL T T EDBLT
DAT Y THBVIET I ETHRTT, ATy 7T, 5IEHDBERRATy 7THons L)
R EH ERONHHET 262 o3, 22 Tld, BEREFIEADPPICHEZIWTWLoTw
2EZAHT, LDBIEFHTIE FEZAH»5RT) ECinoTw3 k3T, Zokichiszoz 1
RATELR, MBS SEFDGETE—HTE2ETEIHZEEZHRIET, 2L DL
EHEEBL CoOGBRZ FRISRLET Ok — & — &),

én

W

M

v N U n
—

o

OEMEE R REAAGOE 2 EEZ B ONE TH, KHEHEED O(log(N) x N?) &
ToTLEVET,

offEEELT A LR EAE T, WA H B L, H[j] K2 j HIHZE->7- L E0D
MEHFDOMED) bied EODLDOZEGERL F T, FL O, TRTD j KL H[j] =0 LT,
kZ NH»5 1 IATL—FLET, KA TL—2aryTlEk, Bardialtd HE) Thsr I L
(Tk)=Tk+1] DEE), BLLRDPRCEDEAD HE+1] THHZ L (TK]#Tk+1] D&
E) Db ET, Tk BPUCHENALXFTH2 EFIC H OMEEEFLET, 3. XF Soll]
THoT, Tkl EALXFETHY, h[l] =0 TH2LIHbDDI bELLICHEbDERD £
T, 2L IMEE—1DTD riciL, Hil\w Hlr] Offild (F\v Hlr +1) Of) +1 £ b %
T (%S, rFIHOME (Hr +1]4+ 1) 1T (r+ 1) JIHOR A5 A>T 39 56TT), Z
NI AHDITBERT i OfEICX D F¥A, LT, ZOERBAEL 20 | fREORRIE
BENO(N?) LD I, FEATDTT,
ZZT.NMEE-1THMTO r gL, (Bl Hlr] Ofi) = (5 Hlr 4+ 1] Offi) + 1,
EVCIHFMFICHFEHLE T, ZoHMER. A H @ Hl+1] 226 Hk oXEIcHh 2 zhz
NOMEZEBRICBELT I Z2MAS, LwIBELEALRTIENTEET (H[K] AEDOMHEIZLL
BEHINET), Lo T, I 2005 h & 5D offsetyalue, addyaie =B L |
hli 4 offsetyalue] + addyalue = H[i] ZHD V72 2 ENTEE T, DL E, BIEZITHBITH
12 offsetyalue & addyame 1€ 1 ZMA UL WTT (FEBIZIE D 9 LEMER B HETF 23,
HELET), Uk D, REORREIEEDL O(N) L0 £,

AtCoder Grand Contest 007 Editorial

writer : dreamoon

A : Shik and Stone

The solution of this problem is quite short. We can get the answer by counting the number
of '#’s in the input. If the number is equal to H + W — 1, the answer is 'Possible’. Otherwise,
the answer is 'Impossible’. Now we want to prove this conclusion.

Firstly, the set of steps which only uses right and down moves(denoted as S4) is equal to
the set of steps using minimum moves(denoted as Sg). Let’s prove it.

Denote g; as the sum of row number and column number of the i-th position of stone.
If using only right and down moves in -th step, g;41 = ¢g; + 1. Otherwise, for left and
up moves, g;i+1 = g; — 1. That is, the absolute difference of two consequtive numbers in
sequence g¢; is always 1. Suppose Shik uses n steps to move the stone. We know that g; = 2
and ¢gn,4+1 = H + W. Therefore, we can know the minimum value of n is H + W — 2 and
gi+1 = g; + 1 for all ¢ must be satisfied when n = H + W — 2. Then we get that S4 and Sp
are all sequences of moves such that n=H + W — 2.

Secondly, because '#’ denotes that the stone had ever located at this position, n + 1 >
the number of '#’s. If the number of ’#’s is larger than H + W — 1, n will be larger than
H + W — 2, then Shik doesn’t use the minimum moves. So in this condition the answer is
always 'Impossible’.

Finally, because there always exists a valid sequence of moves for Shik in inputs. We can
choose any of valid sequence first, then remove these steps such that the position sequence of
stone form cycles (you can see the picture below for understanding). The removing is always
possible becuase it’s impossible to decrease the number of '#’s. If it is possible, it will conflict
with the fact that the input is valid. After removing all unnecessary cycle steps, we can get a
moving sequence which the number of steps added one is equal to the number of '#’s. Now

we get a possible moving sequence using minimum steps which match the input.

$Inl | -====> s steps

b— s | which form cycle

and be removed

>

Bonus problem: If the input dosn’t need to be generate by some valid moving sequence.
Can we use the same method to determine whether such input is generate by Shik with using

only right and down moves in all steps.? If not, how to solve it?

B : Construct Sequences

First we give a possible solution then we justify that it satisfies all of the conditions:

Let rp, = ifor 1 <i < mn. A; =30000 x i for 1 <i < mn. B; = 30000 x (n — i)+ r; for
1< <n.

Now the (sketch of the) proof:

30000x1 < A; < 30000 xn < 30000 x20000 =>1 < A; < 10°. 30000x 1+1 < B; < 30000 x
n +n < 30000 x 20000 + 20000 => 1 < B; < 10%. A; = 30000 x i < 30000 x (i +1) = A; 4.
B; = 30000x (n—1i)+r; > 30000x (n—i) = 30000x (n—i—1)+30000 > 30000x (n—i—1)4r;—1 =
Bi_1. Ay, + By, = 30000 x p; + 30000 x (n —p;) 4+ rp, = 30000 x n+1i < 30000 x n+1i+ 1=
30000 X pi11 + 30000 X (n — pip1) + 7p,, = Ait1 + Bita

C : Pushing Balls

Notice that after rolling one ball, if we renumber all the remaining balls and holes, the
balls still satisfy that the i-th ball is between the i-th hole and the (i 4+ 1)-th hole. Let’s also
recalculate the expected value of the distance between neighbouring items for all possible rolls
of the last ball. We can find that the the expected value E[d;] is still an arithmetic sequence
with N decreased by 1.

So we can calculate the answer recursively: calculate the expected value of rolling distance

of the first ball, and sum it with the remaining similar problem in reduced size.

D : Shik and Game

If the player decided to go back to pick up some coins, he will go back to the very first coin
he hasn’t picked up or even wait for the first coin to appear, otherwise he needs to go back
for that coin again. So, we could partition all the bears into continuous segments to represent
a strategy of the game. More specifically, we first give candies to all the bears in a segment,
go back to collect all the coins in this segment and then proceed to the next segment.

Assuming we have M segments and the i-th segment starts at position L; and ends at

position R;, the answer to the problem is F + % max(t,2 x (R; — L;)). Let dp[i] be the answer
to the problem with only first ¢ bears, we hazv:eldp[i] = min(dp[j] + max(t,2 x (a; — aj+1))),
an O(N?) dp solution. ’

To accelerate the solution, we can split the max part in the above equation into two parts:
t>2x(a;—aj41) and t < 2x (a; —aj41). It’s trivial that for each i we can find a pivot p such
that the first part consists of all j > p and the second part holds for all j < p. Furthermore,
it’s easy to show that p is non-decreasing for all i, so we can maintain p using amortized O(V)
time for all 4.

For the first part, the equation is now min(dp[j]+t). dp[] is non-decreasing, thus the smallest
possible j will leads to the optimal solutiZ)n in all 5. We can calculate this part greedily using

O(N) time for all 1.

For the second part, the equation is min(dp[j] + 2 X (a; — aj+1)). We can rewire it as
j

2xa; + mjin(dp[j] —2 X aj4+1). By maintaining another dp array dp2[i] = rjn:zull(dp[z] —2Xa;y1)
in O(N) time for all ¢, we can calculate 2 x a; + min(dp[j] — 2 X a;4+1) = 2 X a; + dp2[j] in
O(N) time for all 1. !

To this point, we have improved the time complexity of the solution from O(N?) to O(N).

E : Shik and Travel

You may have the intuition that the first step of solving this problem is to apply binary
search on answer. It’s also the first step of the solution provided here. So, we are going to
study the sub problem here: whether there exists an arrangements of leaf cities to stay during
the travel such that the answer is not larger than a certain value V.

Firstly, we should know one thing: in the travel, once the employee passed a road i, he/she

will visit all cities belong to the descendants in the subtree rooted at city i + 1 before passing

10

the road ¢ again. So for any given city, Shik always stay at all leaf cities in the subtree rooted
from this city in consecutive days. More precisely, if the subtree of city ¢ contains n; leaves,
there exist some number st; such that in the last part of day st;, the first part of day st; + n;
and all days from day st; + 1 to day st; + n; — 1, Shik is travelling in the subtree of city 1.
Nevertheless, in other days the employee won’t be in this subtree.

After knowing that, we give a straightforward recursive algorithm to solve this sub problem.
The main idea is to recursively merge possible answers from both children to produce all

possible answers of a vertex. Following is the pseudo code:

function f

argument: root city % of some subtree

return value: a set S; contains ordered pairs (a,b),
each representing there exists one possible
order of stay sequence of leaf cities such
that the sum of tolls at the st; day in
this subtree is a, the sum of tolls at the
day t; +n; in this subtree is b and sum
of tolls in any days from day st; +1 to day
st;+mn; —1 is not larger than V.

f@ 1

if vertex ¢ is leaf:
return (0,0)

set S; as empty set

let two children cities of city ¢ to be j and k

let S]:f(j) and Sy = f(k)

for all combinations of (a,b) in S; and (¢,d) in Sj:
if(b+c+uvj+v, <V) add (a+vj,d+v;) to S;
if(a+d+vj+v, <V) add (c+uvg,b+wv;) to S;

return S;

After calling f(1) and getting S7, we can know the answer by whether S; is empty or not.

But the function may produce quite large |S;|. So we want to reduce it. Because our purpose
is only to know whether S is empty or not. We can remove all (a,b) in S; if there is another
pair (a’,b') in S; satisfying o’ < a and V' < b.

Now we want to prove after performing such removal, we have inequality: |S;|] <
2min (|}, |Si):

Assuming |S;| < |Sk|. When a specific pair (a,b) € S; matching all pairs in Sy, the generated
pairs will be in the form of (a+v;,u) and (u,b+v;) (exact value of u depends on the matched
pair in S). Each aforementioned form will remain at most one pair for a given pair (a,b) € S,
(the one with minimum u among all possible values of u). So the maximum size of resulting
set is at most double of |S;|. The proof for |Si| < |S;| part is similar.

Such inequality make many things wonderful! The most important thing for us is that

11

Zf-v:l |Si| = O(NlogN). Proof is given as the following:

Denote the distance between node i and the root (i.e. depth) as d;. For each city i, let j be
a leaf city in the subtree of city ¢ which has minimum d;, we have |S;| < 249, So, we can
amortize the value of |S;] to all cities in the subtree of city ¢ with depth exactly equals to d; by
adding value 1 to each of such city. Note that there are exactly 2% ~% such cities because d;
is the smallest depth in the subtree. The amortized value in one vertex is at most loga (N +1);
This is because only the parents of a node who has a maximum distance of log, (N + 1) to
the node has the chance to add value to the node, otherwise the size of the tree would be
larger than N (since we have a complete subtree of depth greater than logs(IN + 1)). As a
conclusion, we get Zf\il |Si] < N xloga(N +1) so Zfil |Si| = O(NlogN).

With the fact we can use two-pointer technique to find the minimum value of « in the two
forms (a+v;,u) and (u, b+wv;) since we can maintain that S to be sorted. The time complexity
of the sub problem will be Zf;l |Si| = O(NlogN). Go back to the original problem. The
time complexity will be O(NlogN x log answer).

F : Shik and Copying String

Note that we don’t consider the case Sy = T'. It’s answer is 0 obviously.
In the beginning, I'd like to roughly give a picture about how the string copying works and

what’s the relation between string Sy and string T'. Please see picture below.

12

4}

hm

(W)

(W

=

n N N n
—
£2
O
O

t ¢ o

o

In this picture, we suppose Sy = ”atcoder” and T' = ”aaaccce”. It shows one possible process
such that Sy = T (Note that this picture does NOT show the process of the optimize solution
for minimum ¢). We are only concerned about the first letter in and these letters which is
different to previous letter of themself (the circled letter in the picture). We can connect these
circled letters to their source letters one by one with disjoint lines and finally stop at letters
in Sy. You may notice that these line can only go either left or down.

In the other face, suppose we don’t know the process between Sy and T. But if we can
draw lines from all circled letters in T" to the same letter in Sy, we can construct one possible
process easily. So we can transform the original problem of finding minimum ¢ to check if we
can draws lines from S; = T to Sp.

Now we give a greedy algorithm in intuition to test whether exist configures of line for some
1 with S; = T for each circled letter from back to front, we draw line to down first if possible,
otherwise we draw it to left. If in some step the drawn lines go out of bound, then there exists
no valid process such that S; =T.

This solution can be proven easily. What we should prove is, if there exists some valid
process for S; = T, then the algorithm in this solution will also construct a valid process.

We can always adjust any valid configuration of lines to match the lines produced by our
algorithm step by step. In each step, we find the first time that the lines don’t draw by our

algorithm and change the direction(always from left to down) of the drew line at this point

13

for one unit, and continue to draw the line to left until meeting the lines in previous step. The

picture below show the steps from red lines to meet our algorithm (red -; green -; blue).

4

o O

So t c @

Using this greedy algorithm we can get a binary search answer 4 simulation solution for
this problems. But the time complexity is O(log(N) x N?2).

For speeding up this algorithm, we maintain an array H[j] denoting the highest position
passed by the line in column j. Initially, H[j] = 0 for all j. We iterate k from N to 1. In each
iteration, we can know the answer should at least be H[k] (if T'[k] = T'[k + 1]) or H[k + 1] (if
T[k] # Tk + 1]). If T[k] is a circled letter, we will update values in array H. Next, we will
find the most right letter Sy[l] which is the same with T'[k] and h[l]] = 0. Then the new H]r|
will be equal to old H[r + 1]+ 1 for r from [to k — 1 (it’s because the line in the r-th column
is come from the (H[r + 1] + 1)-th row in the (r 4+ 1)-th column) no matter which ¢ satisfies
S; = T. Now we have an algorithm without binary search and time complexity is O(N?). But
it’s still not fast enough to solve this problem.

Now we focus on the operation: new H[r] = old H[r + 1] + 1 for r from [to k — 1. This
operation just give the the part of array with index from [+ 1 to k value of H in array one unit
of left offset and add one to all of them and we don’t care the value in array H not small than
k more! So we can maintain another array h along with two values of fsetyqiue and addyqiye
such the the value hli + of fsetyqiue] + addyaiue equals to H[i]. After that, in each time we

want to do this operation we can only increase both of fsetyqiue and addygiue by one(with

14

some more detail not covered here). Finally, we get an algorithm with time complexity O(NV)

which can solve this problem!

15

